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Abstract 

We have developed a measure of transient changes in the useful 
field of view (UFOV) in simulators using gaze-contingent dis-
plays (GCDs). It can be used to evaluate safety-critical tasks such 
as driving or flight, and in training to increase the UFOV under 
cognitive load, stress, and fatigue. Unlike the established UFOV© 
measure, our measure can be used in simulators. Furthermore, 
previous peripheral detection tasks used in simulators controlled 
neither the target’s retinal eccentricity nor stimulus intensity. Our 
approach overcomes these limitations by using GCDs to present 
stimuli producing equal performance across eccentricities under 
single-task conditions for two dependent measures: blur detection 
and Gabor orientation discrimination. We then measure attention 
under dual task conditions by varying cognitive load via an N-
back task. Our results showed blur sensitivity varied predictably 
with retinal eccentricity, but detection of blur did not vary with 
cognitive load. Conversely, peripheral Gabor orientation discrim-
ination showed a significant cognitive load decrement. While this 
method is still in development, the results suggest that a GC 
UFOV method is promising.   
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The useful field of view (UFOV) is an important theoretical con-
struct that can be used to describe situational awareness. “The 
UFOV is the total visual field area in which useful information 
can be acquired without eye and head movements (i.e., within one 
eye fixation)” [Ball, et al. 1988].  Therefore, it is a measure of 
speed of processing and attentional breadth.  Agiven individual’s 
UFOV can vary from moment-to-moment as a function of work-
load [Atchley and Dressel 2004; Ball, et al. 1988; Crundall, et al. 
2002; Recarte and Nunes 2003; Williams 1985], and can increase 
with training [Ball, et al. 1988; Roenker, et al. 2003].  The 
UFOV© has been shown to reliably predict negative outcomes in 
real world tasks, such as traffic accidents during driving [Ball, et 
al. in press; Clay, et al. 2005], most likely because people with a 
narrow UFOV often fail to perceive safety-critical information in 
their environment.  Thus, the UFOV can be thought of as a critical 
determinant of a person’s situational awareness [Endsley 1995]. 

Our particular interest is in creating a dynamic contextualized 
measure of transient changes in the UFOV that can be used in 
driving simulators, flight simulators, and virtual reality.  Being 
able to study such situation-dependent moment-to-moment 
changes in a person’s UFOV can be extremely useful in highlight-
ing the specific dangers caused by a narrow UFOV, and thus sug-
gest ways to either avoid or counteract those dangers, for example 
through training.  However, the best-known measure of the UFOV 
(the UFOV© test developed by Visual Awareness Research 
Group, Inc.) is a standardized measure that uses a static array of 
briefly flashed simple stimuli. Clearly, superimposing such a 
stimulus over a competing stimulus, such as the windscreen of a 
driving or flight simulator would be problematic.  Specifically, the 
presentation of the UFOV array would likely mask the competing 
stimulus and disrupt performance in the primary (simulated) task.  
Perhaps even more importantly, because the UFOV© involves 
both detection and localization responses [Ball, et al. 1988; Ball, 
et al. 1990], it would likely cause severe dual-task interference 
with dynamic tasks that are inherently spatial, such as simulated 
driving or flight.  For example, having to suddenly point to the 
location of a UFOV target would likely interfere with the primary 
task.  So, while the commercial UFOV© test might provide an ad 
hoc predictor of future performance, it cannot provide a moment-
by-moment account of how an individual’s UFOV changes based 
on the work load, stress, and demands associated with performing 
the actual task of interest. 

There are, however, other measures of the UFOV that have been 
used in dynamic task-specific contexts, such as the Peripheral 
Detection Task (PDT).  The PDT has been used to measure mo-
ment-to-moment changes in UFOV as a function of workload 
[Crundall, et al. 2002; Jahn, et al. 2005].  Such measures have 
generally not required the participant to either localize or identify 
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the target, but simply to detect it, thus causing far less dual-task 
interference with the primary task, such as driving [Crundall, et al. 
2002; Jahn, et al. 2005].  However, there are important limitations 
in how the PDT has been implemented.  Chief among these are 
that 1) the targets have fixed physical locations, making it impos-
sible to precisely control retinal eccentricity of the targets from 
moment-to-moment, and 2) the targets have fixed intensities, thus 
confounding the effects of eccentricity-dependent contrast sensi-
tivity or resolution and attentional breadth. For example, the PDT 
paradigm, as it has previously been implemented in driving simu-
lators, has used target stimuli, such as LEDs, with physically fixed 
locations and fixed stimulus intensities [Jahn, et al. 2005].  Simi-
larly, in Crundall, et al.’s [2002] study, targets were in a cross 
configuration, located above, below, and to the left and right of 
the center of the screen, again with fixed stimulus intensities.  
Thus, our proposed framework described below overcomes all of 
the above-noted limitations in the UFOV© and previous instantia-
tions of the PDT. Although the issue of determining a suitable 
cognitive load level capable of inflicting an optimal degree of 
UFOV impairment is still one of contention, this text addresses a 
number of considerations relevant to the implementation of this 
novel framework.  

2 Proposed Framework: Gaze-Contingent Atten-
tion Measures For Simulated Environments 

Thus far, there has been a trade-off between ecological validity 
and experimenter control within the current measures of the 
UFOV.  Here, we propose a framework for measuring the UFOV 
in realistic simulated environments while greatly improving stim-
ulus control for our dependent measures of attentional breadth.   

A first critical element of our framework is using gaze-contingent 
displays [Duchowski, et al. 2004; Loschky and McConkie 2002, 
2000; McConkie and Rayner 1976, 1975; Reingold, et al. 2003].  
This allows us to measure attention across the field of view on 
any given eye fixation during dynamic viewing. In our frame-
work, the attentional targets are presented gaze-contingently on 
occasional fixations [Loschky, et al. 2005; Loschky and 
Wolverton 2007].  In this way, the viewer has a chance to make a 
response to the gaze-contingent target before the next target is 
presented.  Furthermore, by presenting the targets only occasion-
ally, the viewer can focus most of their attention on the primary 
task (e.g., simulated driving) as well as the cognitive load task.  
Thus, targets are only presented every Nth fixation.  Furthermore, 
half of the presentations should be “catch trials” in which either 
no target is presented (e.g., no blur for a blur detection task) or the 
standard stimulus is presented (e.g., a vertical Gabor patch for a 
Gabor discrimination task).   

In addition, for gaze-contingent presentation of stimuli, it is im-
portant that the speed of updates at the end of each saccade are 
made quickly enough to avoid disrupting perception or capturing 
attention [Reingold, et al. 2003].  Gaze-contingent blur update 
delays of 60 ms or less do not increase the detectability of blur 
[Loschky, et al. 2007].  To determine the update delay, it is best to 
use an artificial eye and empirically measure the delay between 
the artificial eye movement and the display change. [For a 
detailed discussion of issues related to update delays see Loschky, 
et al. 2007; Reingold, et al. 2003.]]. 

A second critical element in the framework is the dependent 
measure of attention.  These are generally detection tasks or dis-
crimination tasks, both of which have been widely used to meas-
ure attention.  We have implemented our framework using blur 
detection and Gabor orientation discrimination, but many other 

dependent measures are possible (e.g., detection or discrimination 
of color [Duchowski, et al. 2009], motion, etc.).  The dependent 
measures can be generally applicable to any scene (as blur detec-
tion and Gabor orientation discrimination are), or have specific 
content that is context-dependent (e.g., traffic or pedestrian incur-
sions, enemy combatants, etc.). 

A third critical element of our framework is to manipulate availa-
ble attentional resources and determine the effects on our depend-
ent measures.  In our framework, attentional resources can be 
manipulated in numerous ways.  In our implementation of the 
framework we have used the N-back to vary cognitive load, be-
cause it is well-respected, widely used, and the load can be varied 
incrementally [Cohen, et al. 1997; Jaeggi, et al. 2010; Kane, et al. 
2007; Owen, et al. 2005].  We can then compare performance in 
single-task versus dual-task conditions.  Manipulations of atten-
tional resources can be generally applicable (such as dual-tasks, 
fatigue, stress, or drugs), or context-dependent (e.g., traffic densi-
ty, or hazard detection in driving simulators).   

The fourth critical element of our framework is to factor out ec-
centricity-dependent changes in vision that are independent of 
attention (e.g., the loss of acuity with increasing eccentricity).  We 
can do this by first determining each viewer’s eccentricity-
dependent perceptual thresholds (for the given dependent meas-
ure) under single-task conditions.  Then, we can compare perfor-
mance for single-task and dual-task conditions at each eccentricity 
to determine the effects of dual-task cognitive load on the useful 
field of view.  The estimation of baseline eccentricity-dependent 
thresholds can be measured prior to running the main experiment.  
This allows one to then use fixed, thresholded, target intensities 
during the experiment, and measure changes in sensitivity (e.g., 
d’) to them.  Alternatively, one can estimate eccentricity-
dependent thresholds during the experiment, and use those thresh-
olds as the dependent measure of attention. 

2.1 How Attention Should Influence our Measures  

Research has shown that attending to a region of space can im-
prove signal strength for that region in space by increasing con-
trast and spatial resolution [Carrasco 2011]. In addition, Carrasco 
and colleagues have argued that attention increases the signal 
strength of a given stimulus. Conversely, as attention is focused 
on a particular stimulus or region, we can often become less sensi-
tive or unaware of changes in the rest of the image.  

In the general framework, we propose that attention will change 
sensitivity to detection or discrimination tasks (e.g., blur detection 
or orientation discrimination) across the visual field, and thus can 
be used as a measure of UFOV. Under low load conditions, atten-
tion should be evenly distributed across the visual field, but 
should show changes in threshold with eccentricity. However, 
under high load conditions, attention will be more limited, thus 
reducing performance in the blur detection and orientation dis-
crimination tasks.  The decrease in performance due to changes in 
attention should follow one of two possible patterns, either “tun-
nel vision” or “general interference” [Crundall, et al. 2002; 
Williams 1988].  Tunnel vision should show attention narrowly 
focused on the point of fixation. Thus, participants should be less 
sensitive to changes in blur and orientation as you move from the 
point of fixation to greater eccentricities, leading to increased 
thresholds.  Conversely, general interference should show an 
equal decrement at all retinal eccentricities, from central vision to 
the visual periphery.  In order to distinguish between these two 
possible patterns of attention across the visual field, as noted ear-
lier, we must factor out eccentricity-dependent changes in vision 

60



that are independent of attention, by measuring each viewer’s 
eccentricity-dependent perceptual thresholds (e.g., for either blur 
detection or orientation discrimination) under single-task condi-
tions.  By comparing single-task versus dual-task performance at 
each eccentricity we determine whether cognitive load produces 
tunnel vision or general interference. 

Below, we will describe the general methods for implementing 
our framework, along with more specific implementations for 
specific dependent measures.  We will then briefly report on the 
results of several experiments using these two dependent 
measures, and discuss the suitability of each as valid measures of 
attentional breadth within our framework.  

3 Methods 

3.1 Blur Detection  

Blur is a natural part of vision, and occurs due to changes in focal 
length, distance between objects in depth, motion, and various 
vision problems such as refractive errors (e.g., myopia, hyperopia, 
or astigmatism). Sensitivity to blur decreases with retinal eccen-
tricity. Yet, the fact that you cannot perceive fine details in your 
visual periphery, based on the rapid drop-off of contrast sensitivi-
ty with increasing retinal eccentricity, is generally not perceived 
as “blur” nor does it result in accommodation [Wang and 
Ciuffreda 2004]. On the other hand, when the degree of image 
blurring exceeds a threshold, such that the highest spatial frequen-
cies removed would have been potentially resolvable, then blur is 
detected [Loschky, et al. 2005].   

3.2 Gabor Orientation Discrimination 

Humans show a high degree of orientation selectivity, with 
thresholds for discriminating changes in orientation being typical-
ly 1 degree [Burr and Wijesundra 1991; Webster, et al. 1990].  
This is in spite of the evidence that neurons in the visual cortex 
show board orientation tuning functions [De Valois and De Valois 
1988]. Orientation thresholds typically increase with retinal ec-
centricitiy [Mareschal and Shapley 2004].  

4 Blur Detection Measure  

4.1 Methods 

4.1.1 Experiment Overview 

Within a trial, participants carried out three different tasks: 1) 
Memorization of the scene image, for a later (relatively easy) 
picture recognition task.  This was done to encourage participants 
to actively explore the image with many eye movements, (with 
the recognition memory test given at the end of each session). 2) 
Blur detection in the image, which only occurred occasionally for 
single fixations.  Blur levels were varied across eccentricity, and 
thresholds were calculated using an adaptive threshold estimation 
algorithm.  3) A cognitive load task (N-back), which varied in 
terms of the load from block to block. In order to counterbalance 
the effects of learning and fatigue throughout the experiment, 
participants completed the blur detection task through six ses-
sions. Each session contained all levels of the cognitive load ma-
nipulation, while the order of cognitive load blocks was counter-
balanced using a Latin square matrix.  

4.1.2 Participants 

Three lab members (two females) with normal vision (20/30 or 
better) volunteered to participate as subjects in the experiment. 
Each session lasted 1.5-2 hours, with the entire experiment requir-
ing 9-12 hours.  

4.1.3 Apparatus 

Blur detection sessions were conducted on a custom built Origin 
Genesis PC running Microsoft Windows 7, with an Intel Core i7 
970 processor (3.2 GHz), with 24 GB DDR3 RAM, and a 2GB 
Radeon HD6950 video card. Stimuli were presented on a View-
Sonic Graphics Series 19” CRT monitor (Model G90fb) at 85 Hz 
refresh rate, and at a screen resolution of 1024 x 768 pixels.  A 
chin rest was used to stabilize head position at 60.33 cm away 
from the screen. This provided a viewing angle of 33.67o x 25.50o 
for all images. The monitor display was calibrated with a 
Spyder3Elite photometer with a maximum and minimum lumi-
nance of 91.3 cd/m2 and .33 cd/m2, respectively, and a gamma of 
2.21. 

Eye position was acquired non-invasively using a video-based 
eyetracker (EyeLink 1000/2K, SR Research, Ottawa, Ontario).  
The EyeLink system recorded monocular eye position with a 
sampling resolution of 1,000 Hz. Given the unknown, but ex-
pected delay between an actual eye movement and the update of 
the stimulus on the screen, gaze-contingent display change latency 
was measured using an artificial eye (see Appendix A in Bernard 
et al. 2007 for more details on the concept on an artificial eye).  
We found that the measured latency in our apparatus ranged be-
tween 18.25 and 22.25ms (Mean = 20ms, 95% confidence interval 
of 19.75 – 20.25ms).  This is under the 80 ms latency that has 
been shown to first produce increased gaze-contingent image blur 
detection rates [Loschky, et al. 2007].  Consequently, the gaze-
contingent display updates should not have increased the detecta-
bility of blur by our participants. 

4.1.4 Stimuli 

We used a total of 1,296 images from the SUN image database 
[Xiao, et al. 2010].  The images were comprised of a large number 
of scene categories, including forests, mountains, street scenes, 
and home and building interiors. Images were excluded if they 
contained poor image focus, predominantly low-frequency infor-
mation, or watermarks.  All images were 1024x768 pixels.   

To determine the degree to which subjects could detect blur on 
specific eye fixations, we used an occasional gaze-contingent blur 
detection task [Loschky, et al. 2005; Loschky, et al. 2007].  In this 
task, we used a gaze-contingent bi-resolution display, in which 
images were presented with two levels of resolution, a circle of 
high resolution imagery surrounded by lower resolution imagery, 
with the center of high resolution placed at the center of gaze 
(Fig. 1) using eyetracking [Duchowski, et al. 2004; Loschky, et al. 
2002; Reingold, et al. 2003]. We used a Gaussian low-pass filter, 
which has previously been shown to have linear detection proper-
ties [Murray and Bex 2010]. The Gaussian low-pass filters were 
defined by: 

(1)    

where f is the spatial frequency, and SD is the standard deviation 
of the Gaussian.  Using Mathworks MatLab (2012a), we then 
generated 450 blurred versions of the each base image, with a 
low-pass filter spatial frequency cut-off that ranged from a maxi-
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mum of 50 cycles per degree (cpd; the human limit of resolution) 
and a minimum of 0.50 cpd (highly blurred).  These images were 
then used as windowed masks to be presented during a valid blur 
trial. In order to reduce the saliency of any edges between the 
blurred and unblurred region at the window’s edge, the strength of 
blur was tapered. 

 

 

 

 

 

 

 

Figure 1. Sample image of a 9o eccentricity blurred image.  For 

ease of illustration, the blurred edge is highlighted with the yellow 
dotted circle and the viewer’s point of fixation is indicated with a 

central dot, though these were not visible to the participants. 

4.1.5 Procedure 

4.1.5.1 Blur Detection Task 

We used a go-no-go task to test viewers’ ability to detect gaze-
contingent blur.  For purposes of signal detection analyses, we 
presented an equal number of blur-present and blur-absent dis-
plays, which occurred on every 7th fixation, with the order of blur-
present/absent displays randomized to prevent participants from 
detecting patterns in the displays.  On blur-present displays, we 
presented the blur for a single eye fixation, with the normal unal-
tered image shown on the majority of fixations (13 out of every 
14).  Participants were asked to press a mouse button with their 
right hand any time they detected blur [Loschky, et al. 2005; 
Loschky, et al. 2007].  During blur-absent displays (i.e., catch 
trials), an identical copy of the original unaltered image was pre-
sented for the same duration.  Following each presentation, partic-
ipants had up until the next blur-present/absent display (i.e., 7 
fixations) to make a go-response, otherwise it as coded as a no-go 
response. (See example video of the blur detection task here.) 

Blur was presented at one of four retinal eccentricities (0o, 3o, 6o 
and 9o), outside of a gaze-contingent circular window, with blur 
values being controlled by an adaptive threshold estimation pro-
cedure.  Inside the window was unaltered imagery.  Each trial 
ended when the participant had made 56 fixations (1 presenta-
tion/7 fixations x 2 blur-present/absent displays x 4 eccentricities).  
Order of eccentricities was randomized for each trial/image.  To 
determine blur thresholds, we used the Single Interval Adjustment 
Matrix (SIAM) adaptive threshold estimation procedure 
[Kaernbach 1990], which is suited to a “go/no-go” task.  We sim-
ultaneously estimated blur thresholds for each eccentricity on a 
per-block basis, with the estimations being continuously updated 
across all images within a block. 

4.1.5.2 Cognitive Load Manipulation  

We used an N-back go-no-go task using auditory presentations of 
letter targets.  The task requires a participant to hold a list of n-
items in working memory, to check if the most recently presented 
item is the same as the item presented n-items back in the list.  If 
an item was valid, participants were instructed to make a go-
response on a game controller.  The difficulty of the task increases 
as a function of the n value of the task [Cohen, et al. 1997; Jaeggi, 
et al. 2010]. The easiest N-back level was 0-back, in which sub-
jects simply had to respond whenever the letter “m” was present-
ed.  Letters were presented every 2000 ms, and the mean presenta-
tion duration for each item was approximately 630 ms. (See ex-
ample video of the dual N-back + blur detection task here.) 

In addition to 0, 1, 2, and 3-back tasks, we also included two con-
trol conditions: 1) The single task with n-back letters presented 
while participants were instructed to ignore them, and 2) the sin-
gle-task with no n-back letters.  N-back performance feedback (% 
correct) was given after every 6 images to ensure that participants 
were sufficiently engaged in the cognitive load task.  Importantly, 
no feedback was given on the blur detection task so that the n-
back task was given implicit priority.  

4.2 Results 

Due to the small number of participants and large number of ob-
servations for each subject, we used a Restricted Estimate of Max-
imum Likelihood [REML Kenward and Roger 1997] to assess 
fixed effects of cognitive load level for the n-back task, and fixed 
effects of cognitive load and eccentricity in the blur detection 
task. Each subject was considered a random variable in the analy-
sis.  

4.2.1 N-Back Performance 

The N-back results showed that subjects indeed were less sensi-
tive in the N-back task as n increased from 0 to 3-back (F (3, 6) = 
10.371, p = .0076).  This was as expected, and showed that the N-
back task was indeed capable of creating a cognitive load for our 
subjects. 

4.2.2 Blur Detection Performance 

 

 

Figure 2. Blur detection results as a function of retinal eccen-

tricity and cognitive load. 

As shown in Figure 2, the blur detection task showed the expected 
significant main effect of eccentricity, indicating that our estima-
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tion of blur thresholds was, in fact, sensitive to differences in 
spatial resolution as a function of eccentricity (F(1, 1.661) = 
3930.56, p = .0008).  However, as shown in Figure 3, we failed to 
find a significant main effect of cognitive load (F(5, 8.181) = 
2.248, p = .146), nor was there a significant interaction between 
cognitive load and eccentricity (F(5, 6.98) = 1.778, p = .236).  

Figure 3. The same blur detection results as shown in Figure 2, 

but plotted as a function of cognitive load and eccentricity.  

4.3 Discussion 

The results surprisingly suggest that blur detection may be unaf-
fected by cognitive load, and thus may not be a suitable measure 
of attention within our general framework.  We therefore con-
ducted a second experiment (with different subjects) in which we 
tested the hypothesis that the failure of the N-back task cognitive 
load to interfere with our visual attention task was due to the audi-
tory modality of the N-back.  In that experiment, we used a visual 
N-back task, but found nearly identical results to the auditory n-
back task.  We also carried out a third experiment (with different 
subjects) in which we tested the hypothesis that the failure to 
show an effect of the N-back cognitive load on our measure of 
attention (blur detection) was due to attentional capture by the 
gaze-contingent onset of the blur (a “pop-out” effect).  In that 
experiment, we used a tachistoscopic version of the blur detection 
task, in which target images were rapidly flashed, and blur was an 
integral part of the target images.  However, we again we found 
nearly identical results to the previous experiments.  Thus, we 
conclude that blur detection either occurs preattentively, or simply 
has a very high threshold for being affected by cognitive 
load[Loschky, et al. in press].  In either case, it seems that blur 
detection is not well suited as a measure of the UFOV.  

5 Gabor Orientation Discrimination Measure 

5.1 Methods 

5.1.1 Experiment Overview 

Based on the above results using the blur detection task as our 
dependent measure of attention, we decided to implement our 
general framework with an alternative dependent measure, Gabor 
orientation discrimination.  Within our framework, a primary 
advantage of discrimination tasks over detection tasks is that they 
are more sensitive to attentional manipulations [Carrasco 2011; 
Correa, et al. 2004; Kowler, et al. 1995].  Gabor orientation dis-
crimination tasks, in particular, have shown clear effects of atten-
tional manipulations in spatial cueing tasks.  However, the above 
studies using Gabor discrimination as a dependent measure of 

attention all used neutral gray backgrounds, rather than Gabor 
patches embedded in real-world scenes.  Additionally, those stud-
ies did not manipulate attention through cognitive load, nor did 
they present the Gabor patch targets gaze contingently.  Thus our 
study is, to our knowledge, the first to employ such a method.  
The experiment using Gabor orientation discrimination also dif-
fered from our previous experiments in two key ways.  First, in-
stead of using a free-viewing picture memorization task, partici-
pants performed a driving task in which they were instructed to 
follow a lead vehicle in a medium fidelity simulator. Second, 
responses to the n-back task were spoken, rather than made with a 
mouse response.  

Figure 4. Still image of the Gabor orientation discrimination task 

in the driving simulator.  This shows a valid (non-vertical Gabor 
patch) trial.  The central green dot indicates the viewer’s point of 

fixation, but was not visible to participants.  

5.1.2 Participants 

Twelve young adults with valid driver’s licenses and normal 
(20/30 or better) vision were recruited as paid subjects at a re-
search institute separate from Experiment 1. 

5.1.3 Apparatus 

The bulk of the experiment used a desktop driving simulator run-
ning Hyperdrive software (by DriveSafetyTM).  All data was col-
lected through the HyperDrive system via a desk-mounted 
Logitech steering wheel and under-desk pedals, at 60 Hz.  A 
SmartEye Pro 5 gaze tracker was also used.  This system uses four 
stationary IR cameras to reconstruct head pose and gaze position 
at the same sample rate as the HyperDrive.  Voice recording of N-
back responses were recorded through an EasyVR speech recog-
nition module.  

We used an overlay rendering PC to embed our gaze-contingently 
presented Gabor patch targets within the dynamically simulated 
driving scenes.  This PC accepted two inputs: a) the video output 
from the HyperDrive system using an Epiphan VGA2PCIe cap-
ture card, and b) the gaze position from the SmartEye via UDP.  A 
Python program collected the inputs, performed fixation identifi-
cation, decided when to render a stimulus overlay based on exper-
imental parameters, and used OpenGL Shader Language (GLSL) 
and an NVidia GeForce GTX 480 GPU to render the HyperDrive 
input image with or without a stimulus overlay.  Its output was 
displayed on an 80-inch Sony Aquos LED monitor (Figure 1) at 
60 fps and 1024x768 resolution. 

5.1.4 Stimuli 

Environments and vehicles were created using Hyperdrive’s 
standard tiles and entities, and ambient traffic was controlled with 
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customized Tcl/Tk scripts.  The display computed a realistic driv-
ing dynamic, and rendered the visible scene at 60 fps and 
1024x768 resolution. 

5.1.5 Procedure 

5.1.5.1 Gabor Orientation Discrimination Task 

Prior to the main experiment, participants were pre-tested to de-
termine their Gabor orientation discrimination threshold that 
would produce 80% accuracy at each retinal eccentricity (10° or 
15°).  The absolute value of the Gabor’s deviation from the verti-
cal axis varied based on the participants’ responses using the PSI 
method [Kontsevich and Tyler 1999].  The orientation values that 
were determined during this pre-test phase were used in the test-
ing phase. 

During the testing phase, a set of four Gabor patches, each equi-
distant from fixation, were occasionally presented at either 10° or 
15° from the point of fixation (Fig. 4).  The Gabors were smooth-
ly blended with the image frames, with each patch’s background 
value being set to the mean brightness of the region under each 
patch.  Participants were required to make right/left orientation 
distinctions by pressing a button on the steering wheel.  Patches 
were presented randomly every 5-10 seconds in the threshold 
experiment and every 6-10 fixations in the main experiment. Giv-
en that that most viewers fixed their gaze on the lead vehicle, thus 
leading quite long fixation durations, we opted not to present the 
Gabor patch for the duration of a fixation.  Instead, we presented 
the Gabor patches for a duration of 67 ms.  

5.1.5.2 Driving Task 

During the testing phase, participants viewed the playback from 
the driving simulator.  Participants were required to follow a lead 
vehicle in the center lane of a 3-lane highway, and were instructed 
to maintain a 50 meter gap from the lead vehicle while maintain-
ing their position in the center lane. Difficulty in the driving task 
was manipulated by increasing or decreasing the variability in the 
lead vehicle’s speed.  

5.1.5.3 Cognitive Load Manipulation 

Besides manipulating the speed of the lead vehicle, participants 
also completed a 2-back task in the dual-task condition.  Every 3 
seconds, one of 26 letters in the alphabet was selected at random.  
There was a 25% chance that each letter in the series would be a 
valid target.  During single-task trials, participants drove without 
performing the 2-Back task. (See example video of the dual N-
back + Gabor discrimination task here.) 

5.2 Results 

5.2.1 Gabor Orientation Discrimination Perfor-
mance as a Function of Cognitive Load 

As shown in Figure 5, we found significant effects of N-back 
cognitive load (single-task vs. dual-task) on viewers’ Gabor orien-
tation discrimination performance, which was significantly inter-
fered with by the 2-back task (F(1,11) = 5.5, p = .004, Cohen’s f2 
= 1.98).  However, we did not find an interaction between cogni-
tive load and retinal eccentricity, as predicted by the “tunnel vi-
sion” hypothesis (i.e., with performance in the visual periphery 
more affected than performance in central vision).  Instead, per-
formance at 10° and 15° eccentricity was equally affected by the 

N-back cognitive load, consistent with the general interference 
hypothesis of UFOV impairment.  We note, however, that a 
stronger test of the tunnel vision hypothesis would also include 
targets at foveal or parafoveal eccentricities (i.e., ≤ 5°).  We also 
found no effect of driving difficulty levels on Gabor orientation 
discrimination (F(1,11) = .7, p = .4), though the lead vehicle was 
generally in central vision, thus potentially constituting a foveal 
load. 

Figure 5. Gabor orientation discrimination as a function of sin-
gle- versus dual-task (N-back), driving task difficulty, and retinal 

eccentricity of the Gabor patches.  

5.2.2 Driving Task Performance as a Function of 
Cognitive Load 

We evaluated lead vehicle following driving performance in terms 
of the standard deviation of following distance.  As shown in 
Figure 6, following was more difficult with greater lead vehicle 
speed variability (F(1,11) = 11.9, p = .005).  Importantly, howev-
er, following performance was unaffected by the 2-Back task 
(F(1,11) = .01, p = .9).  The driving task in this study was rela- 

Figure 6. Driving task performance (SD of following distance) as 
a function of single- versus dual-task (N-back) and driving task 
difficulty. 

tively simple, and it might be the case that a more demandingtask, 
such as a 3-Back task, is needed to disrupt following performance.  
Conversely, the fact that driving was unaffected by the N-back 
task while the Gabor orientation discrimination task was affected 
by the cognitive load manipulation indicates that our measure of 
attentional breadth is uniquely sensitive to changes in attentional 
resources.  

5.3 Discussion 

The results of our study with the Gabor orientation discrimination 
dependent measure of attention are very promising.  Consistent 
with the underlying assumptions of our general framework for 
dynamically measuring the UFOV with gaze-contingent displays, 
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we found a clear effect of cognitive load on our measure of atten-
tion.  This suggests that discrimination tasks are more likely to be 
effective dependent measures of the UFOV than detection tasks 
within our general framework.  In addition, regarding the effects 
of cognitive load on the UFOV, these results are more consistent 
with the general interference hypothesis than the tunnel vision 
hypothesis, although this conclusion remains tentative.  Previous 
work has shown similar support for the general interference hy-
pothesis when there is no foveal load, (i.e., no difficult task in 
central vision) [Crundall, et al. 2002, 1999; Williams 1988].  We 
had a demanding task in central vision, namely following a lead 
vehicle, but no Gabor patches presented in foveal vision, so fur-
ther work will be needed to more rigorously test the tunnel vision 
hypothesis. 

5 Conclusions and Future Work 

We have described a new framework for measuring transitory 
changes in the UFOV in dynamic, realistic, simulated environ-
ments.  The framework itself is relatively simple and flexible in 
terms of the parameters that can be manipulated by the experi-
menter.  In particular, the framework uses gaze-contingent stimu-
lus presentation [Duchowski, et al. 2004; Loschky, et al. 2002, 
2000; McConkie, et al. 1976, 1975; Reingold, et al. 2003], so that 
stimuli can be presented dynamically while people naturally view 
scenes while nevertheless tightly controlling the retinal eccentrici-
ty of targets.  Furthermore, by using adaptive threshold estimation 
for the stimuli at each target eccentricity, the targets are adjusted 
so that they are equally detectable at each retinal eccentricity un-
der single-task conditions.  Doing so allows us to unconfound 1) 
changes in the UFOV due to low-level eccentricity-dependent 
variations in visual sensitivity (e.g., acuity or contrast sensitivity) 
versus 2) changes in the UFOV due solely to the effects of atten-
tion.   

In these studies, we have examined the utility of two different 
dependent measures of attention within our framework: blur de-
tection and Gabor orientation discrimination.  The results from 
these studies serve as a cautionary note that not all dependent 
measures are created equal, despite having tremendous control 
over our stimuli.  In the blur detection task, we found no effect of 
cognitive load on blur sensitivity. This finding was replicated in 
two further experiments, which indicated that the null effects of 
cognitive load on blur detection could not be attributed to our 
research methods, but instead seems due to blur detection having 
minimal attentional demands [Loschky, et al. in press].  Converse-
ly, the Gabor orientation task showed significant differences in 
performance under the cognitive load of 2-back N-back task.  
Thus, in using the general framework outlined here for dynami-
cally measuring the UFOV, it is critical to first validate the meas-
ure of attention being used.  

Finally, just as the dependent measure of attention is interchange-
able with other measures, so too is the manipulation of attentional 
resources.  While we have used the N-back task as a cognitive 
load manipulation in these experiments, other validated dual-task 
manipulations are also applicable (e.g. counting-backwards, men-
tal math problems, etc.).  Furthermore, we predict that other 
means of varying attentional resources can easily be included in 
our framework as well (e.g. fatigue, stress, or drug manipula-
tions).  In line with this idea, we will be continuing to explore the 
possible effects of driving difficulty manipulations on our dynam-
ic measure of the UFOV. 

Given the flexibility of our framework, we believe widespread 
applications of it would be useful for purposes of occupational 

screening and measuring changes in the UFOV during training or 
development.  Although our current implementation of the 
framework using the Gabor orientation discrimination task is still 
being refined, we believe that the results reported here are broadly 
promising for gaze-contingent dynamic measures of transitory 
changes in the UFOV. 
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