
Planting Technologies for Uniform Emergence

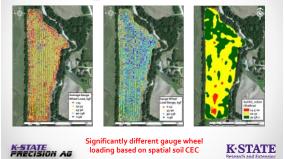
Dr. Ajay sharda Kansas State University || @KSU_PrecisionAg CORN SCHOOL - 2017

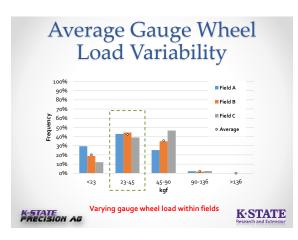
Mechanical Downforce?

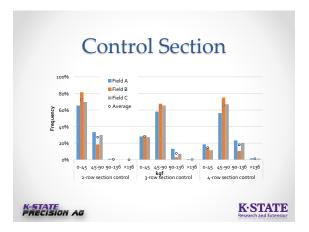
- Identify real-time gauge wheel load variability
 - What is the row-to-row gauge wheel variability?
 - Need for section control?Does tire tracks and no-tire racks have
 - difference in gauge wheel load variability?
 Id soil type a major factor in deciding required gauge wheel loading?
 - Do we need active downforce control?

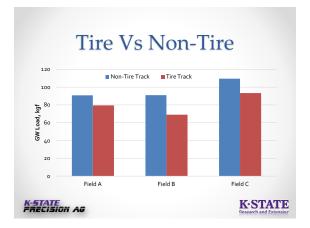
K-STATE

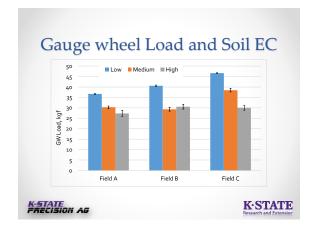
Measurements Gauge wheel load sensor - all • rows RTK GPS for mapping ۰ Accelerometer for row unit ride quality Hydraulic pressure sensor ۰ Potentiometer for toolbar status Ground speed radar ۰ DAQ programmed to record at 10 Hz K-STATE PRECISION AG **K·STATE**


Soil EC and Moisture




K-STATE PRECISION AG


K-STATE Research and Extension

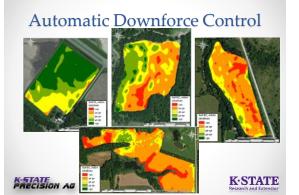

Gauge Wheel Load

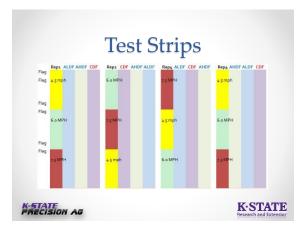
Key Learnings

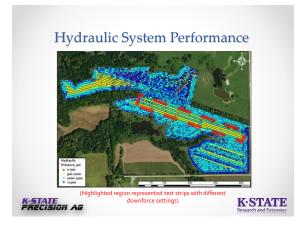
- ✓ Gauge wheel load variability exists
- ✓ Correlation between gauge load variability and soil CEC
- ✓ Gauge wheel load range indicate section control
- Smaller control section could provide more accurate gauge wheel loading management
- ✓ Significant gauge wheel load difference for row units running on "Tire" and "Non-Tire" tracks

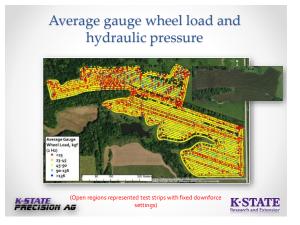
Automatic downforce control system

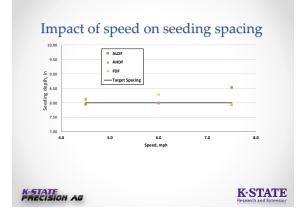
K-STATE PRECISION AG

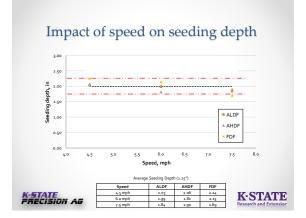

K-STATE

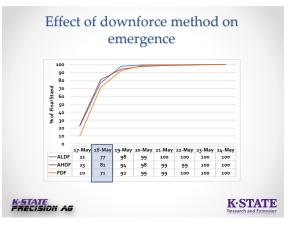

Goals


- Quantify the active downforce control system accuracy
- Evaluate seed depth uniformity, emergence and seed spacing uniformity with active downforce control
- Develop technology implementation practices








Average Spacing

Speed	ALDF	AHDF	FDF
4.5 mph	7.95	8.14	8.09
	(19.0, 97.4)	(24.1, 96.0)	(28.9, 94.7)
6.o mph	7.99	8.00	8.28
	(26.4, 95.4)	(26.1, 92.7)	(24.5, 94.0)
7.5 mph	8.53	7.94	7.95
	(28.1, 88.8)	(25.3, 95.3)	(28.7, 93.5)

```
K-STATE
PRECISION AG
```

K-STATE

Overall

- Significant effect on seeding depth due
 - downforce setting and ground speed
 - Active downforce and lower speed could provide more consistent seeding depth
 Soil EC/moisture and speed
 - Row unit ride good and did not impact seed placement
- Future work
 - Study impact of downforce selection and operating conditions on
 - depth and emergence
 - System response and accuracy in dynamic conditions

- Maintains planting depth
- Automatically maintains the optimum gauge wheel load seed placement
- Greater control resolution
- Minimize row unit bounce and vibration due terrain and field conditions (e.g. rocks, clods, etc.)
- Adjustment of applied downforce or margin from the cab
- Ability to collect as-planted data for verification and identification of in-field variability

