Feed the Future Innovation Lab for the Reduction of Post-Harvest Loss

Feed the Future IL RPHL -Ghana

KANSAS STATE | IGP Institute UNIVERSITY | Department of Grain Science and Industry

Feed the Future IL RPHL

Update and Year 2 Plans – Ghana Team

George Opit – Oklahoma State Univ., Project Lead Sam McNeill – Univ. of Kentucky George Mbata – Fort Valley State Univ. James Campbell – USDA-ARS-CGAHR Paul Armstrong – USDA-ARS-CGAHR Frank Arthur – USDA-ARS-CGAHR Enoch Osekre – KNUST, Kumasi GH, In-Country Coordinator Shannon Washburn – KSU Oana Baban, Issac Ayobami – Vestergaard Frandsen, SW, NG Irene Egyir – Univ. of Ghana Kwabena Adu-Gyamfi – In-country logistics Peter Evans Nsiah – Pens Food Bank

Feed the Future IL RPHL – Ghana

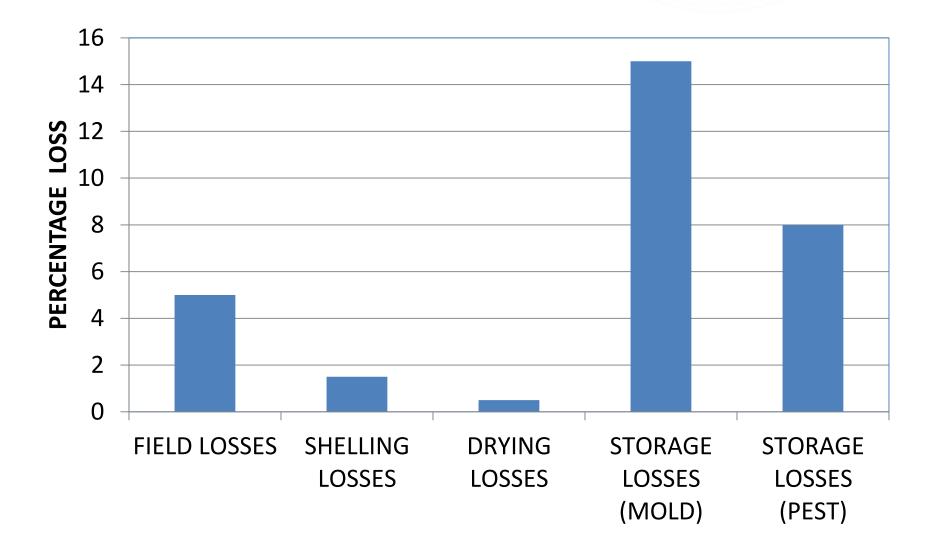
Five year timeline (2014 – 2018)

- Year 1
 - Conduct assessments of post-harvest systems in production regions with a focus on methods to reduce PHL
 - Identify areas where research is needed to reduce PHL of maize
 - Identify potential in-country partners

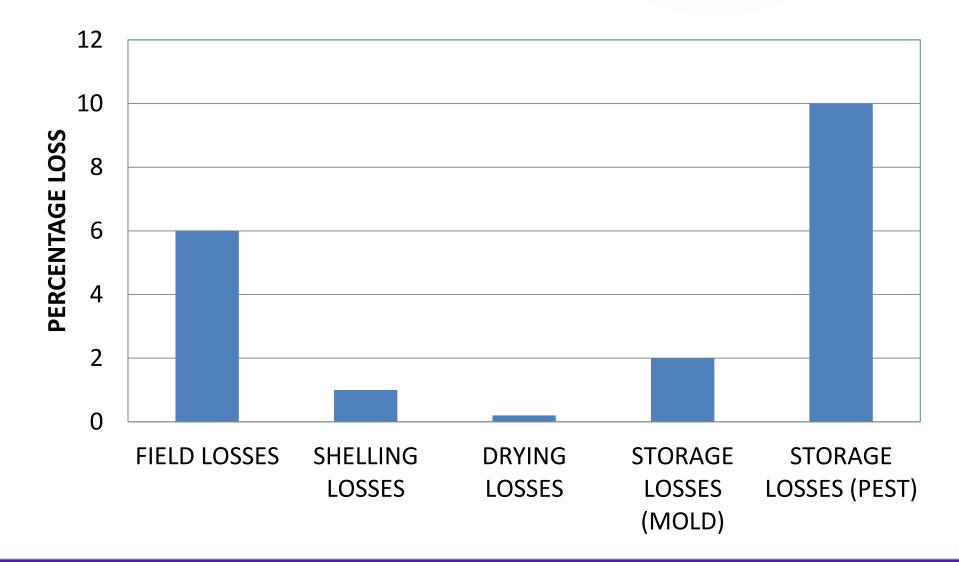
Feed the Future IL RPHL – Ghana

Five year timeline (2014 – 2018)

- Years 2 and 3
 - Conduct research on promising technologies and practices (pilot projects) (KNUST MS Students)
 - Cultivate relationships with incountry collaborators (ATT, RING, SPRING)


Feed the Future IL RPHL – Ghana

Five year timeline (2014 – 2018)


- Years 4 and 5
 - Conduct educational programs to share results of research and train extension leaders/other educators to reduce PHL of maize
 - Scale up research projects

PHL – Maize Middle Belt / Major Season

PHL – Maize Middle Belt / Minor Season

U

Equilibrium Moisture Content for Corn

Temp.		Relative Humidity, %						
С	20	30	40	50	60	70	80	90
21	6.9	8.4	9.9	11.3	12.8	14.4	16.4	19.4
27	6.5	8.0	9.4	10.8	12.3	14.0	16.0	18.8
32	6.1	7.7	9.1	10.5	11.9	13.5	15.5	18.4
38	5.8	7.3	8.7	10.1	11.5	13.1	15.1	17.9
43	5.5	7.0	8.4	9.7	11.2	12.8	14.7	17.6
Source: ASAE Data D245.4 / Average of two Prediction Eqns.								

Open solar drying

Open solar drying

Solar 'tent' dryer

Greenhouse type dryer

Warehouse Storage

Warehouse Storage

USDA - ARS Moisture Meter

MS Entomology Projects

James Kofi Danso

- Evaluation of maize moisture content and aflatoxin levels from farms to warehouses
 - Measure MC at farms and markets
 - Track grain moisture during drying
 - Determine aflatoxin levels at farms, markets, and warehouses
 - Observe insects in plastic silos at FBOs for 4 months (minimum)

🛛 Naomi Manu

KANSAS STATE

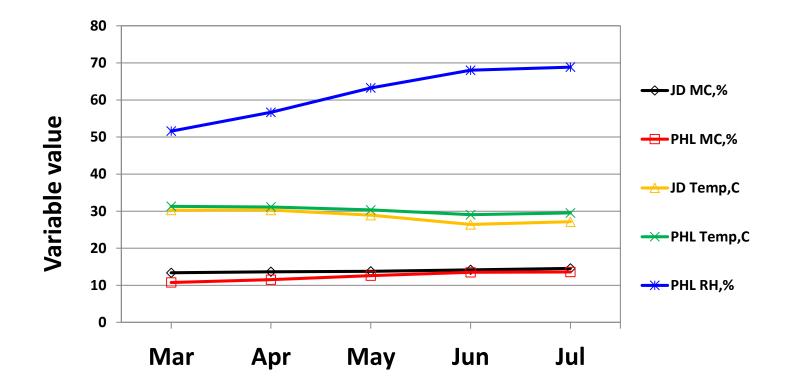
VERSI

- Evaluation of stored-product insect populations along the maize value chain
 - Collect maize samples from farms and markets during the major and minor seasons and determine the number and species present
 - Measure stored-product insect infestation levels before and after solar drying
 - Determine insect levels during warehouse storage

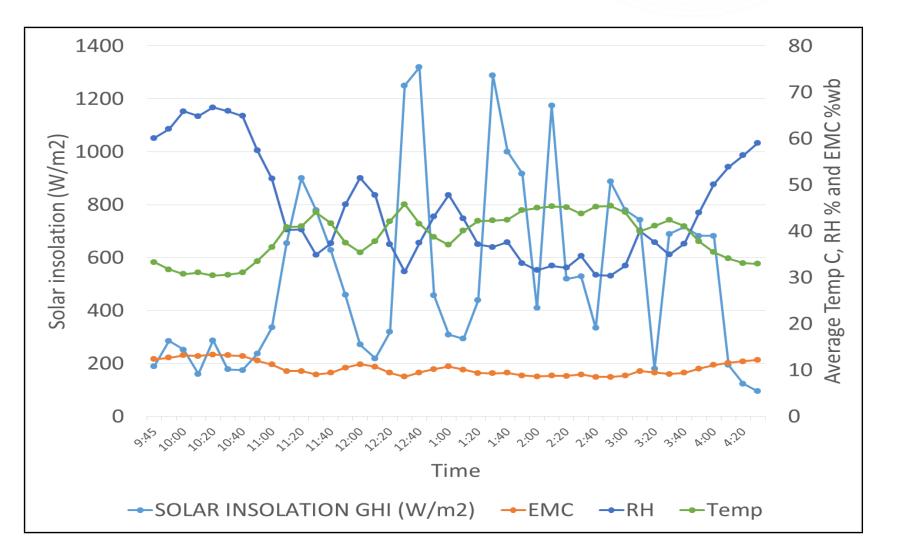
Year 2 Activities

- Follow progress of MS students and advise as needed on various aspects of their study
- Paul and Sam trained students at KNUST to operate with the Solar Bubble Dryer and Romer mycotoxin analyzer
- Achint Sanghi and Isaac Addo tested the SBD in the Middle Belt Sep, Nov, and Dec
- Meet with Technology Research and Implementation Team (TRI) and Engagement and Advisory Team
- Cultivate opportunities to collaborate with other USAID-funded projects (Africa RISING, RING, SPRING, ATT)

KANSAS STATE


UNIVERSI

Comparison of JD and PHL Meters



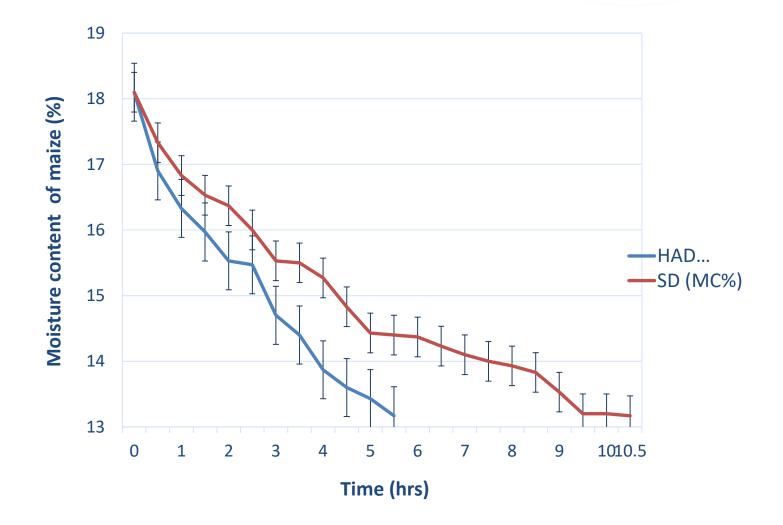
SBD for Grain Sorghum in Wenchi

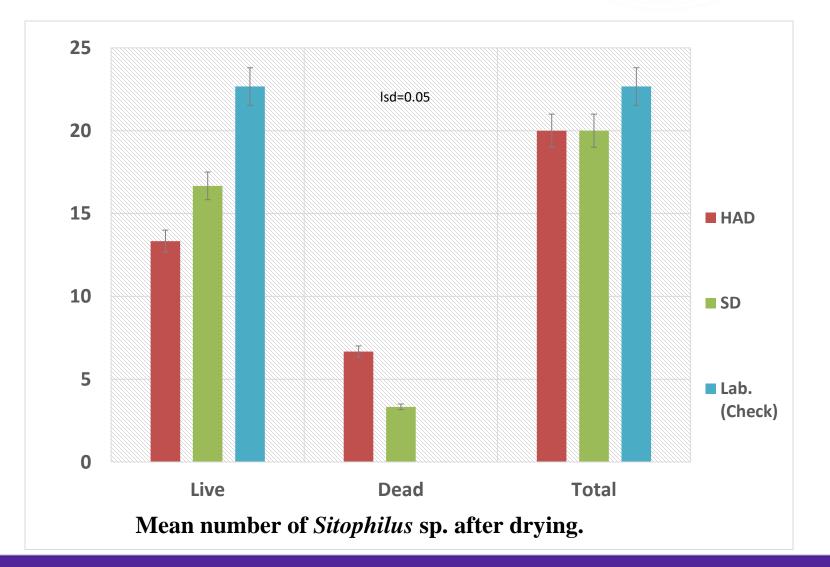
SBD for Grain Sorghum in Wenchi

KANSAS STATE | IGP Institute Department of Grain Science and Industry

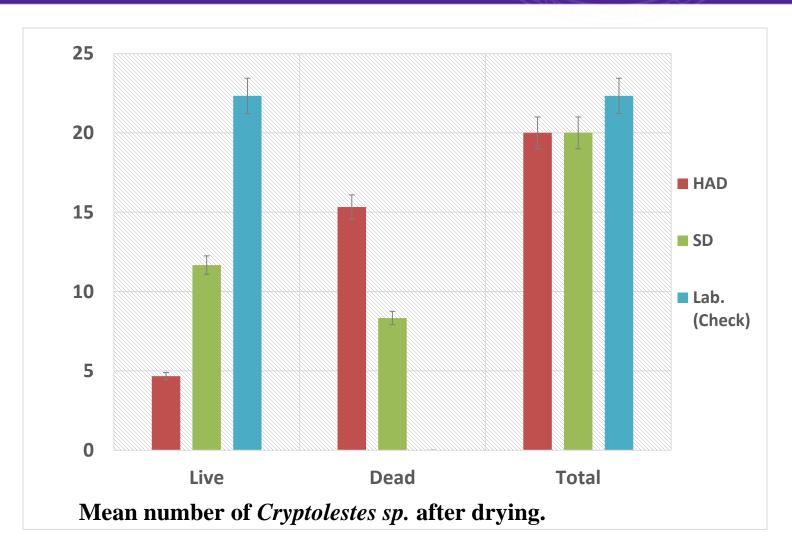
PHL-IL Poster presentations

Solar-Biomass Hybrid Dryer

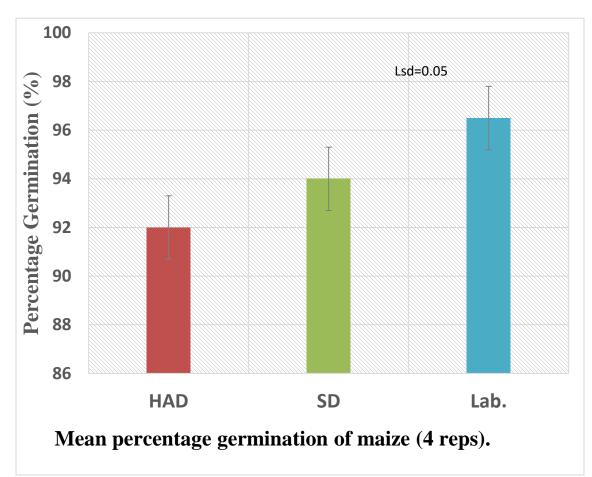

Drying Racks Filled in SBHD


IGP Institute Department of Grain Science and Industry

Drying Maize in Ejura


Insect Survival Data – Sitophilus sp.

Insect Survival Data – Tribolium sp.



Insect Survival Data – Cryptolestes sp.

Germination data

U

Data sheets for drying tests

	Sampling	U	ISDA senso	or	JD		
Time	Location	Temp.	RH, %	MC1, %	MC2, %	Observations	Initials
10:30	Inlet	30.1	62.5				
	2.0	30.8	82.2	16.1	16.8		
	7.0	32.1	78.0	15.1	18.1		
	12.0	32.3	86.2	17.1	20.6		
	17.0	31.5	82.0	16.0	19.8		
	22.0	32.6	86.8	17.3	17.5		
	Outlet	30.6	74.5				
11:30	Inlet	36.1	47.1				
	2.0	44.3	32.2	10.4	17.6		
	7.0	49.1	55.2	15.0	19.5		
	12.0	37.8	86.2	17.3	20.0		
	17.0	38.2	78.7	16.0	20.6		
	22.0	32.6	81.0	17.3	17.5		
	Outlet	41.7	41.2				

Data sheets for storage studies

Grain monitoring data for Ghana.				GPS		'		$\left(\right)$	17	()	SIS	erial	$\left[\right]$		
Town:	Ejura			Latitude:	7.3928 N			()		٩	kernels	Foreign material	grains		
Storage:	Bags in warehouse		I	Longitude:	1.3833 W	'	S	sp	odor	Discolored	n <u>k</u>	L L	gra		
							ect	Moulds	foc	col	Broken	reig	Other		
Date	e Location	Grain	Temp.	RH, %	MC1, %	MC2, %	Ins	ž	Off	Dis	Bro	Б	đ	Observations	Initials
19-Jun-15	Mbanaa	Wht Maz	31.8	63.1	12.6	13.7					x	х	\Box'		
19-Jun-15	Asubuoso	Wht Maz	31.7	62.6	12.1	13.0	x	\Box	\Box		х	х		LGB - watch closely next time.	
19-Jun-15	Nokware Asa	Wht Maz	31.9	62.8	11.6	12.5			\Box		x	х			

Grab Samples from 2 Locations

PICS triple layer poly bag



IGP Institute Department of Grain Science and Industry

Storage Tanks/Bins

IGP Institute Department of Grain Science and Industry FEED FUTURE The U.S. Government's Global Hunger and Food Security Initiative

